Immunodominance and clonal selection inspired multiobjective clustering
نویسندگان
چکیده
منابع مشابه
Multiobjective Optimization Using Ideas from the Clonal Selection Principle
In this paper, we propose a new multiobjective optimization approach based on the clonal selection principle. Our approach is compared with respect to other evolutionary multiobjective optimization techniques that are representative of the state-of-the-art in the area. In our study, several test functions and metrics commonly adopted in evolutionary multiobjective optimization are used. Our res...
متن کاملMultiobjective Hboa, Clustering, and Scalability Multiobjective Hboa, Clustering, and Scalability
This paper describes a scalable algorithm for solving multiobjective decomposable problems by combining the hierarchical Bayesian optimization algorithm (hBOA) with the nondominated sorting genetic algorithm (NSGA-II) and clustering in the objective space. It is first argued that for good scalability, clustering or some other form of niching in the objective space is necessary and the size of e...
متن کاملEvolutionary Multiobjective Clustering
Clustering is a core problem in data-mining with innumerable applications spanning many fields. A key difficulty of effective clustering is that for unlabelled data a ‘good’ solution is a somewhat ill-defined concept, and hence a plethora of valid measures of cluster quality have been devised. Most clustering algorithms optimize just one such objective (often implicitly) and are thus limited in...
متن کاملAn Improved Clonal Algorithm in Multiobjective Optimization
In this paper, we develop a novel clonal algorithm for multiobjective optimization (NCMO) which is improved from three approaches, i.e., dynamic mutation probability, dynamic simulated binary crossover (D-SBX) operator and hybrid mutation operator combining with Gaussian and polynomial mutations (GP-HM operator). Among them, the GP-HM operator is controlled by the dynamic mutation probability. ...
متن کاملDistributed Multiobjective Quantum-Inspired Evolutionary Algorithm (DMQEA)
Most of the multiobjective evolutionary algorithm inherently has heavy computational burden, so it takes a long processing time. For this reason, many researches for reducing computational time have been carried out, in particular by using distributed computing such as multi-thread coding, GPU coding, etc. In this paper, multi-thread coding is used to reduce computational time and applied to mu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Progress in Natural Science
سال: 2009
ISSN: 1002-0071
DOI: 10.1016/j.pnsc.2008.08.004